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ON THE CRYPTOCOMPLEXITY OF KNAPSACK SYSTEMS

by
Adi Shamir
Department of Mathematics
Massachusetts Institute of Technology

February, 1979

Abstract: A recent trend in cryptographic systems is to
base their encryption/decryption functions on WP-complete
problems, and in particular on the knapsack probliem. To
analyze the security of these systems, we need a complexity
theory which is less worst-case oriented and which takes into
account the extra conditions imposed on the problems to
make them cryptographically useful. In this paper we con-
sider the two classes of one-to-one and onto knapsack
systems, analyze the complexity of recognizing them and of
solving their instances, introduce a new complexity measure
(median complexity), and show that this complexity is in-
versely proportional to the density of the knapsack system.
The tradeoff result is based on a fast probabilistic knap-
sack solving algorithm which is applicable only to one-to-
one systems, and it indicates that knapsack-based crypto-
graphic systems in which one can both encrypt and sign
messages are relatively insecure.

Key words and phrases: Cryptography, Digital signatures,
NP-complete problems, Knapsack problems.




1. Introduction

Cryptography, which has always been considered an esoteric mixture of

art and science, is rapidly gaining respectability as an important branch

of complexity theory. One of the major reasons for this change is our

increasing ability to prove (or at least to give strong supporting evidence)

that certain computational tasks are inherently difficult. Such results

may be discouraging news for engineers, but in the context of cryptosystems

they can make the construction of unbreakable super-codes possible. In

fact, cryptosystems may turn out to be the most important positive applica-

tion of the theory of lower bounds, since they seem to be the only case in

which impossibly difficult computations are desirable. }
In spite of this close relationship, the tools of standard complexity

theory are not very well suited to the needs of cryptography. Even when

we solve the major open problems (such as the P # NP conjecture) we cannot ;

claim that cryptosystems based on difficult (e.g., NP-complete) problems

are secure, for the following reasons:

(i) The standard measures of worst-case and average-case complexities are

completely inadequate. The existence of some heuristic technique

<~ ——

which solves a positive fraction (say, 1/1000) of the instances in

polynomial time is enough to make the cryptosystem useless, even if

. i

the average case complexity of the heuristic is exponential or if it
fails to work correctly on the vast majority of the cases. What we
need is a theory of "amost everywhere difficult" computational tasks. |
(i11) Complexity theory usually considers the difficulty of a single isolated |
instance of a computational task. In cryptanalysis, we are often

given a big collection of related problems (e.g., many cyphertexts

s
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generated by a common cryptosystem and key) to which we can apply
statistical methods, analysis of repeated patterns, etc. It is not
clear how to include such factors in the complexity-theoretic
analysis of a cryptosystem.

(iii) One cannot take an arbitrary difficult computational task and transform
it into a cryptosystem. In order to be useful in secret-communication
systems, the encoding functions must be one-to-one, and in order to
be useful in certain signature generating systems, the encoding functions
must be onto (or almost onto - see below). These extra conditions
(which are not usually dealt with in complexity theory) can have a

major effect on the security of the cryptosystem.

In order to handle these problems, a new theory of cryptocomplexity
must be developed, with a particular emphasis on the cryptocomplexity of
NP-complete problems. In this paper we consider the special case of the
knapsack probiem (upon which many of the newer cryptosystems are based)
in order to get sharper results, but we believe that some of the ideas and

results can be extended to other NP-complete problems as well. An excellent

survey of the problems and achievemen:s in this area can be found in Lempel [5].

2. Definitions

A cryptosystem is a collection of pairs consisting of an encryption
function EK (which maps cleartexts into cyphertexts) and a decryption
function DK (which maps cyphertexts back to cleartexts), such that
DK(EK(M)) = M for every cleartext M and key K (this implies that Eg must

be one-to-one). In classic cryptosystems, the two communicating parties

share a common pair of encryption/decryption functions which enable them




to communicate over insecure channels. In public-key cryptosystems [ 1], each
user publicly reveals his encryption function but keeps his decryption
function secret. When user A wants to send a message M to user B, he can
compute EB(M) quickly, but only B can decrypt it back to M. If in

addition EK(DK(M)) = M for every message M and key K (i.e., if Ey and D

are inverse permutations over the same message space) then A can sign

a message M by computing DA(M); this signature can be easily authenticated
by applying the publicly known EA to it, but it cannot be forged on

other messages.

In many cryptosystems, it is difficult to make the function EA onto,
and thus not all the possible messages can be signed. The density of a
cryptosystem is defined as the fraction of the signable messages among all
the messages. In high-density cryptosystems this ratio is close to one,
and thus messages can be signed either directly or after a slight perturba-
tion of some unimportant bits. In low-density cryptosystems, too many trial
perturbations are necessary and signatures become impractical.

Public-key cryptosystems based on NP-complete problems use the
asymmetric relation between problems and their solutions. The easy
encryption functions assign to each solution (= cleartext) some problem
(= cyphertext) for which it is the unique solution, and the difficult
decryption functions solve these problems in order to recover the original
cleartext. The most popular of these cryptosystems use the knapsack
problem, for which we give a precise definition below.

A knapsack system K is a finite sequence of natural numbers (generators)

A knapsack problem (or instance) is a knapsack system + a

LIFPRPRL WY
target value b; the problem is to determine if b has a 0-1 valued
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representation CyseeesCy such that i§1 cia; = b (in a modular knapsack

problem, this equation should hold modulo a given modulus m). The knapsack

problem is known to be NP-complete both in its modular and in its non-
modular versions. The cleartexts in a knapsack system K are the represen-
tations CioenesCy while the cyphertexts are the corresponding target values b.
The system is one-to-one if every target value has at most one representation
in K, and onto if every possible target value has at least one representation
in K (the possible target values in the non-modular case are all the
integers in the interval [o’iglai]’ and in the modular case all the integers
in the interval [0,m)). ;
Knapsack systems seem to be an ideal source for encryption functions, i
since they are numeric (and thus easy to implement electronically), fast
(need n-1 additions and possibly one modular reduction), and probably
uniformly hard to invert (in the sense that there are extremely few knapsack i

systems for which fast inversion algorithms or heuristics are known).

3. Characterization of one-to-one or onto knapsack systems

As described in the introduction, the cryptographically interesting
knapsack systems are those which are one-to-one or onto. In this section we ,

consider the problem of characterizing these two sets of knapsack systems.

— e

From the probabilistic point of view, we have: |

Theorem 1: A random modular knapsack system with n generators and modulus m

is 1ikely to be one-to-one when n < % logzm and non one-to-one otherwise.
Proof (Sketch): For randomly chosen modular knapsack systems, the g’

target values corresponding to the 2" possible representations are




distributed very uniformly (with possible repetitions) in the [0,m)
interval. When successive representations are enumerated (e.g., in
lexicographic order on the n-bit sequences) and their corresponding
target values are marked on the interval, the first repeated marking
of a point is likely to occur around the v/m stage (this is a variant
of the birthday problem in probability theory - see [2]). Thus if
" < /ma repeated marking is not likely to occur, while if "> /m
it is. Interpreting a repeated marking as a knapsack system which is
not one-to-one and taking binary logarithms of these inequalities

give the desired result. Q.E.D.

Theorem 2: A random modular knapsack system with n generators and modulus i
m is likely to be onto when n > 1ogzm4-1ogzlogzm- logzlogze and |
non-onto otherwise.

Proof (Sketch): Using the random marking paradigm again, we would like to
know how many points should be marked at random (with possible repetitions)
on the [0,m) interval before all the points are likely to get marked at
least once. The probability that a particular point remains unmarked
after one marking stage is 1-1/m, and after 2 marking stages it is ;

iy :
Pm,n = (1-1/m)° . ?

The expected number of unmarked points at the end of the marking

process is m-Pm nt and thus the knapsack system is likely to be onto

when m-P < 1 and non-onto when m-P > 1. To find an explicit
m,n m‘n

relation between m and n, we evaluate

i 1ef™ 1ym2"/m . -2%m
m-Pm,n-m-(l-ﬁ) -m-[(l-a)] A mee "




The turning point is when

n n
m-e'2 /m 1 or m e2 /m .

Taking repeated logarithms, we get
1092m = (2n/m)1ogze
and then
logzlogzm = n- logzm-+logzlogze .

which, after rearranging the terms, gives the desired result. Q.E.D.

Example: A 200 element modular knapsack is likely to be one-to-one when
its modulus and generators are over 400 bits long; it is likely to be

onto when its modulus and generators are less than 192 bits long.

These results show that the expected complexity of solving instances
of a random knapsack system with n generators which are k bits long is at
most exponential in min(n,k), and thus systems in which n and k are very
different should be avoided. The reason is that if n >> k, we can
eliminate all but O(k+logk) of the n generators and still expect to
be able to represent every target value; if k >> n, we can consider just
the 2n lowermost bits in the generators and still expect each represent-
able target value to have only its original representation.

Although these theorems give us some insight into the average-case
behavior of knapsack systems, they obviously do not enable us to decide
whether a particular knapsack system is one-to-one, or onto. The difficulty

of these decision problems is considered in the next group of results:




Theorem 3: Deciding whether a given knapsack system is one-to-one is
co-NP complete.

Proof: The decision problem is clearly in co-NP, since there is always
a short proof that a given system is not one-to-one (namely, the two
representations involved).

To show completeness, we reduce the partition problem to the

non-one-to-one problem. The partition problem (which is NP-complete —
see [4]) is to decide whether the equation .g c;a; = 0 has a solution

i=1
in which C; € {-1,+1} for all i.

Lemma 4: A knapsack system a.,...,a_ is not one-to-one if and only if the

i n
n
equation _Z]ciai==0 has a non-trivial solution in which c, ¢ {-1,0,+1}
'|=
for all i.
Proof: If the knapsack system is not one-to-one, then some target value b

has two different representations Ci""’cﬁ and c",...,c;:
n
121 ciai =b, iZ] Ciai = b.

in which each c; = c% -c; is -1, 0 or +1, and at least one of the ¢
is not 0.

Conversely, if the equation has a non-trivial solution CysneesCp s
let us define

| 1 if c; = -1
c: = ’ ol -
: 0 otherwise : 0 otherwise

It is easy to see that 8y = €4 - c? for all i, and thus the equation

n
z cjay = 0 implies

A n

nmMms

i




which gives two different representations for the common value of

these terms. Q.e.D.

Proof of Theorem 3 (continued): Given a partition problem A1s.e0sdps WE

would like to construct a knapsack system ai,...,aa in such a way that

Kk n
L. C:a. = 0 has a solution with c. € {-1,+1} iff _Z.c.a! =0 has a
i=] 11 1 i=] 10

non-trivial solution with c% e {-1,0,+1}. The n = 2k -1 numbers a;

are defined as follows:

2.0, 423 1<i<k-1
kb ag
at =42y ay B ey
i 745
2.23(1-k) k+l<i<2k-1

The easiest way to understand this reduction is to consider the numbers
a; as bit strings. The bit strings of numbers a% in the first group are
composed of prefixes (into which the bit strings of the original a; are
left-shifted) plus 3k-bit suffixes (in which single characteristic bits
are turned on). The number aé is similarly defined, except that all
the characteristic bits of the previous k - 1 numbers are turned on in
its suffix. Finally, the numbers a%+k in the last group have empty
prefixes, and their suffixes are (numerically) twice as big as those
of the corresponding a% numbers.

To show that a%,...,aék_] has the desired properties, assume that
1'}é]ciai = 0 has a solution with c, € {-1,+1}. MWe define the coefficients

ci in the following way:




: ?ﬁ if i<k
c% 2 0 if i > k and ik # Cx
-1 if i > k and Cick =S~ +1
+1 if i >k and Cik = S *© -1 .
To show that ié;] c%a% = 0, we consider separately the prefix and

suffix regions in this equation. The prefix parts are not empty only
in ai,...,ai. Since they are equal to CIFRRPRL and the coefficients
ci,...,ci are equal to CisenesCys the prefix regions in the equation

th

sum up to zero by assumption. In the suffix parts, the i*" group of

3 successive bits is not empty only in a, (where it is 001), in
a, (where it is 001) and in LI (where it is 010); our choice of c%,
c& and c%+k makes sure that all these 3-bit groups of bits add up to

2k-1

zero, and thus the suffixes as a whole add up to zero in 'zl c%a%.
1:

To show the converse, let ci,...,cék_] be any non-trivial solution
of iE;]C%ag = 0, with c§ e {-1,0,+1}. Taking ¢, = c; for i = Voo sk
and considering the prefix parts of these equations, it is easy to see
that 1§]Ciai = 0. What remains to be done is to show that this
solution is legal, i.e., that none of the ¥ is 0.

Since the maximum summed value in each group of 3 successive bits
in the suffix is 4 (in binary 001+ 001+ 010=100), there can be no carry
from one group to the next, and thus each group must sum up to zero
independently. The only coefficients (ci, cﬁ, c;+k) which can make
the groups 001 in a%, 001 in ai and 010 in a%+k sum up to zero are
(0,0,0), (+1,+1,-1), (-1,-1,+1), (+1,-1,0) and (-1,+1,0). For different

values of i, different coefficient triplets can be chosen from this set,

provided that the common c& entries get consistent values in all the triplets.
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Since cy,...,C5,  is non-trivial, there is at least one i for which
(c%,ci,ci+i) # (0,0,0), and thus c& # 0, which implies that c; # 0
for all 1 < i < k. Q.E.D.

Corollary 5: Deciding whether a given modular knapsack system is one-to-one
is co-NP complete.

Proof: When m > 121 a; the modulus is irrelevant, since no modular reductions
can ever take place. Q.E.D.

The situation with respect to the onto property is quite different:

Theorem 6: Deciding whether a given knapsack éystem is onto is doable in
polynomial time.
n
Proof: We show by induction on n that the whole interval [0,_2]a1] is
'|=

representable in the knapsack system CIERTR (in which the a; are

?# a; for all 1<j<n

i=1
(this condition is clearly decidable in polynomial time). It is true for

arranged in non-decreasing order) iff aj<l +

any single element knapsack system since [O,a]] is representable iff algj.
Let Ayseeesd g be an n+l element knapsack system in which
J-=1 - n
ay £} 151°i forall 1 ¢« 6. If a4 > 1t iglai = b, then the
target value b cannot be represented although it is in the interval.
n+l
On the other hand, if a 41 < b, then every target value in [o,iglai]

is either in the subinterval [0,b-1] (where it is representable with

T T

Cotl = 0 by the induction hypothesis) or in the subinterval [an+]. ; o
an+]+-b- 1] (where it is representable with Casy ® 1). Note that the § ;
two subintervals may overlap, and thus some target values may have %
representations of both forms. Q.E.D. é
|
—— 4 .
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The complexity of the modular onto decision problem is still open.
No simple characterization was found, and in fact it is not even clear
whether the problem is in NP union co-NP. We conjecture that the problem
is very difficult, perhaps even nz-comp]ete (it is in LP) since it has the
form "for all target values, there exists a representation" — see [11]
for more details).

These results show that we cannot effectively characterize all the
cryptographically-useful knapsack systems. All we can hope for is to
characterize certain subsets of them, such as the Merkle-Hellman [ 6 ]
and the Graham-Shamir [10] one-to-one knapsack systems and the onto
knapsack systems described in [9].

An interesting open problem is whether knapsack problems remain NP-
complete when restricted to knapsack systems which are one-to-one. The
same question can be asked about the complexity of other similarly
restricted NP-complete problems (propositional formulas with at most one
satisfying model, graphs with at most one hamiltonian cycle, etc.). As far
as we know, none of these problems have been shown to be either NP-complete

or polynomially solvable.

4. Properties of one-to-one knapsack systems

A basic property of one-to-one knapsack systems, which will be used

in the sequel, is:

Theorem 7: Let Ayseeesdy be a one-to-one (modular or non-modular) knapsack
system, let i be an arbitrary index between 1 and n, and let b and b+a1

be two target values whose representations (if they exist) are denoted

T

o

[
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by CyseeesCy and ci,...,ca, respectively. Then:

(1) If both b and b+a, are representable, then c; =1 if and only

if c; = 0.
(ii) If b is representable but b+ai is not, then ¢y = 1.
(iii) If b+ai is representable but b is not, then c; = 0.

Proof: (i) If c; = c% = 0, we can add ai'to the representation of b
(i.e., change c; from 0 to 1) in order to get a second (and different)

representation for b*-ai. If ¢ = c% = 1, we can subtract a; from the
representation of b4-ai (i.e., change c% from 1 to 0) in order to get
a second (and different) representation for b. Both cases clearly
contradict the assumption that the knapsack system is one-to-une.
(ii) If b had a representation in which c; = 0, then by changing
C; to 1 we would get a representation of b4-ai, and a contradiction.
(iii) If b*-ai had a representation in which c; = 1, then by

changing c% to 0 we would get a representation of b.

Q.E.D.

This theorem shows that in one-to-one knapsack systems, the sequence
of ¥ values in the representations of successive multiples of some fixed
generator a; (O-ai, l-ai, R-ai, ...) is extremely uniform. Denotin§ by ?
the undetermined value of c; when the multiple is unrepresentable, a
typical sequence is:

010101?01012220101010%¢?01....
This result is particularly important in modular systems, since the set
of (modular) multiples of a, contains all the possible target values

whenever ay and m are relatively prime.
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We now turn to consider some transformations which can be applied

to knapsack systems without changing their one-to-one or onto character:

Lemma 8: If ap,...58, (m) is a one-to-one (onto) modular knapsack system and
d is relatively prime to m, then the augmented knapsack system

da]....,dan (m) is also one-to-one (onto).

Proof: Since d is relatively prime to m, it has a modular inverse, dd ' =1

(mod m), and thus

. 1

n &
izl Ci(dai) =b (mdm) € I c.a, =bd

=1 5% (mod m).

Consequently, the number of represéntable target values in the two
systems is the same, and multiple representations occur in one system
], respectively).

Q.E.D.

iff they occur in the other (with target values b and bd~

Lemma 9: If a15..058, (m) is a one-to-one (onto) modular knapsack system, then
the knapsack system obtained by replacing any subset of the a{s by
their complements m-a, is also one-to-one (onto).

Proof: It is enough to show that a single complementation of a, to m-a,
leaves the system one-to-one (onto). If b has two representations

CrseeesCy and ci....,ca in the new system, then

n n
b = c](m-a])+ L ciay ci(m-a])'l»iig:zcllai (mod m) ,

i=2
and thus
n n
[} - i = '
b+ (c]+c])a1 26y +1§2c1a1 ot 1{‘2‘:1‘ (mod m) ,
i.e., ci. CoseeesCp and €y cé.....c& are two different representations

of a common target value in the old system. Similarly, b can be

dn o Rl € e

.
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represented in the new system iff b+a, can be represented in the old
system, since
o b n
b+a]-i5 c;a; (mod m) € b-(l-q)m-aﬂ+i%c¢10mdm)_

Q.E.D.

We end this section with the following technical observation:

Lemma 10: If ays..05dp (m) is a one-to-one modular knapsack system in
which u target values are unrepresentable, then m = ™ 4w,

Proof: The 2" possible representations generate 2" different representable
target values; all the other m- 2" possible target values are

unrepresentable. Q.E.D.

5. Permutation knapsack systems

The ideal knapsack system from the cryptographic point of view is one
which is both one-to-one and onto (i.e., a permutation). While each one of
the two properties is believed to be very hard to check, their intersection

is surprisingly easy:

-

v

Lemma 11: The knapsack system a],;..,an defines a permutation if and only
if (under some reordering) each a; is eactly 21'].

Proof: An easy extension of the proof of Theorem 6.

Theorem 12: The modular knapsack system al....,an(m) defines a permutation
if and only if m=2" and (under some reordering) each a; has the

S following form: n-1{ arbitrary leading bits followed by 1 followed by

i-1 trailing zeroes.

S, S B e s A
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Proof: By Lemma 10, m= 2". At least one of the generators (say, a]) must
be odd, since if all the generators (and the modulus) were even, odd
target values could not be represented in the system. This odd generator
is relatively prime to m, and thus multiplying all the generators by
a;](mod m) creates a new normalized knapsack system l.aé,...,a; (m)
which is also one-to-one and onto by Lemma 8.

A1l the multiples 01, 1+1, 2-1, 31, ... of the first generator
are representable, and thus by Theorem 7 the coefficient 9 alternates
between 0 in the representations of even numbers and 1 in the representa-
tions of odd numbers. Since the generators a',...,aa have trivial repre-
sentations of the form 0...010...0, they must all be even.

The proof can now proceed by induction. Since the generators, the
modulus and the representable numbers are all even in the subsystem
aé,...,aa (m), we can divide them by 2. Applying the characterization
in the theorem to the permutation system aé/Z....,a&/Z (m/2), we know
that each a%/z (2 <1i<n)ends with a 1 followed by i-2 trailing
zeroes, and thus each a; ends with a 1 followed by i -1 trailing zeroes.
Since a; = a]-a% (mod 2") and a4 is odd, this also characterizes the
structure of the original generators a;.

The other direction (showing that any modular knapsack system
with this structure defines a permutation) is left for the reader as an

easy exercise. Q.E.D.

As noted by many researchers, the complexity of inverting permutation
encryption functions cannot be any higher than A = NP Nco-NP, and thus it is
not 1ikely to be NP-complete. (The uniqueness of the solution enables us

to give short proofs both for the question "is there a solution satisfying
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property P" and to its converse "do all the solutions satisfy ~P".) In the
special case of knapsack-based encryption functions, we can use the

characterization theorems in order to get the stronger result:

Corollary 13: AIll the knapsack problems generated by (modular or non-
modular) permutation knapsack systems are polynomially solvable.
Proof: In the non-modular case, there is only one permutation knapsack
system of each size, and it defines an identity mapping. In the

n(n-1)/2 non-isomorphic permutation knapsack

modular case, there are 2
systems of size n (they differ in the leading bits of the generators),
but their structure makes it easy to determine successive cfs in

the representation of each b (c] =0 iff b is divisible by 2, ¢, = 0

iff b-c,a, is divisible by 4, etc.). Q.E.D.

Thus, unlike the Rivest-Shamir-Adleman factorization cryptosystems
(see [8 1), nu single ‘knapsack-based cryptosystem can both encode and
sign arbitrary messages.

What happens whe:n the onto condition is allowed to have a few excep-

tions? An illustrative result is:

Theorem 14: The modular knapsack system LITRRRRL (m) is one-to-one, and
onto with a single exception bo. if and only if m = 2"+1 and (under
some reordering) each a; is either alozi'](mod m) orm - a]-Zi'](mod m).

Proof: We first show that all the generators a; are relatively prime to
the modulus m=2"+1. If (ai,m) > 1, then the cyclic sequence of
numbers b°+1+0-a1. b°+l+l-a1. b°+l+2-a1. ... (mod m) contains
fewer than m distinct elements, and in particular it does not contain

b.. Consequently, all these numbers are representable, and by

0
Theorem 7 the <y in their representations alternate between 0 and 1.

1

e g L At Y A B N o




” oy

S

The length of the cycle must therefore be even, but this contradicts

the fact that this length must also be a divisor of the odd modulus m.

Wwe can now multiply the generators by a;] in order to normalize
the knapsack system to ],aé,...,a& (m). Since m is odd, exactly one of
each a%,m—a% pair is even and thus by Lemma 9 we can transform this
knapsack system to 1,a",...,a; (m) in which all the generators except
the first are even, and in which they are listed in non-decreasing
order. If we can show that a$ = 21'] for all i, we get the desired
characterization of the original knapsack system by unwinding the two
normalizing transformations we applied to it.

The sequence of 4 values in the representations of m successive
multiples of the generator 1 has the following form:

0101...01?0101...01.

Consequently, the subsystem ag,...,a; represents all the even target
values in the range [O,bo) and all the odd target values in the range
(bo,m). Since the generators a",...,a; themselves are even, they are
all smaller than bo'

If there is any odd target value in [0,m) which is representable
in ag,...,a; (m), 1let b] be the smallest. By changing some P frum
1 to 0 in the representation of b], we get a representation of the
smaller odd target value by - a, (modular wraparound cannot occur since
a; < b0 < b]) — a contradiction. Thus a",...,a; can represent only
even target values in [0,m) and b° =m-1=2",

If (without modular reduction) igzag > m, there is some j such
that b2 = ig;a¥ <m and b3 = bz-fag >m. As a sum of even generators
by (mod m) is even, but b3 (mod m) (which is actually bzi-aj-nﬂ is odd.

This contradicts the assumption that no odd number in the interval

i N R o 5 TN Sl 1 i L
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[0,m) can be represented in a",...,a; (m).
This leaves us with a one-to-one knapsack system a",...,a; in
which all the even numbers are representable and in which no modular
reductions can ever take place (since igza; <m). By Lemma 11, the
Zi-l

s 6 21 29,

only knapsack system having this property is a; =

Q.E.D.

A similar (but somewhat more complicated) characterization was found
for modular one-to-one knapsack systems which are onto with two exceptions.
We haven't carried out this detailed analysis any further, but we conjecture
that all the modular one-to-one knapsack systems with sufficiently high
density are recognizable in polynomial time, and that all their associated
knapsack problems are solvable in polynomial time. The characterization
problem is likely to get harder and harder as the density decreases, since

in the absence of the density condition it is co-NP complete.

6. A new complexity measure for cryptographic systems

As described in the introduction, both the worst-case and the average-
case complexity measures are inadequate in the context of cryptography,
since the security of a cryptographic system depends on the complexity of
the easiest (rather than the most difficult) instances of the underlying
problem. When a cryptanalyst tries to decode a batch of intercepted
messages, he does not crack them in sequence, regardless of computational
effort. Instead, he determines a threshold of effort beyond which individual
decoding attempts are abandoned. The cryptanalysis is likely to succeed

if a sufficiently hign percentage of the possible messages is decodable

s Lo & n w o o
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within this time threshold. Note that the actual complexity of the unsolved

cases (which can have a strong influence on the average-case complexity)
does not matter in this model.

The new complexity measure, which we call median complexity, is
essentially a worst case measure on the easier half of the instances. More
formally, we define:

Definition: A problem P(x) (where P is a predicate or a function on

instances x) has a median complexity C(n) if there exists an algorithm

A for it such that for each size n, A solves at least half the instances

X whose size is n within time C(n).

An obvious generalization of this definition is to replace the "half"

by a fraction parameter 0 < a < 1; the resultant percentile complexity
C(n,a) gives for each n and o the complexity of the easiest o of the

instances of size n.

Example: Consider the following factorization problem: For each input x
(a natural number in binary notation), we have to print out "PRIME" if
X is a prime number, and some non-trivial factor if x is composite. The
median complexity C(n) of this problem is 0(1), since for half the
numbers of each size, 2 is a non-trivial factor. The algorithm can be
extremely slow on the odd inputs (say, using exhaustive search) without
affecting this median complexity. What is the percentile complexity

of this factoring problem?

The new complexity measure enables us to define the following important

property of cryptographic systems:
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Definition: A problem is uniform if there is a polynomial q which bounds

its worst-case complexity to q(éLJC(n,ao) for every fraction a, and C(n,a)
()

algorithm that solves it.

This definition states that for each fixed fraction ag,,the worst case
complexity C(n,1) is not much bigger than the complexity of the easiest o
of the instances, and thus a difficult uniform problem is not likely to
have sizeable easy subsets of instances. An example of a problem with a
uniform behavior was recently discovered by Rabin [7 J. He considered the
(apparently difficult) problem of taking square roots modulo a composite
number m, and showed how to transform each instance of this problem into
any other instance, with uniform probability distribution. By trying 0(5—) \
random transformations, any C(n,ao) algorithm for taking the square rootso
of a fraction a, of the numbers modulo m, can be made a probabilistic
0(5— C(n,ao)) algorithm for taking the square roots of all the numbers
modglo m.

Randomly chosen modular knapsack systems with many more generators
than bits (see Theorem 2) seem to have a similar uniform behavior, although
in a less rigorous sense of the word. The transformation in this case
consists of subtracting a random subset of the first half of the generators
from the target value b, and representing the new target value b' in terms
of the second half of the generators. If each half of the generators is
an onto knapsack system, then b can be transformed to any other target
value b' (typically with a fairly uniform distribution), and any such b’
has a representation. The coefficients of the generators in both halves

give us a legal representation of the original target value b.
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In the next section we demonstrate the usefulness of the new complexity
measure by showing that the median couiplexity of solving modular knapsack
problems is inversely proportional to the density of their associated
systems, and thus all the very-high-density one-to-one modular knapsack
systems (which we were unable to characterize explicitly) are cryptographi-
cally insecure. Both the worst-case and the average-case complexity

measures seem to be inadequate for this purpose.

7. Tradeoffs between the density and security of modular knapsack systems.

A simple way of motivating our result is as follows. If a complicated
but smoothly-behaving function f has to be evaluated at many points, it
makes sense to precompute a table of values of f at a sufficiently dense
grid of points. When an actual argument b is given, we look up the values
of f at the closest grid neighbors of b, and use them in order to interpolate
f(b). If the function has some isolated discontinuities, this technique can
be applied only to those arguments b whose grid cell does not contain a
discontinuity. We thus get a triple tradeoff between the number of
discontinuities, the grid size, and the fraction of the arguments b for
which f(b) can be interpolated from the table. By fixing this fraction to
one half, we get a relationship between the number of discontinuities and
the complexity of precomputing the table (as determined by the grid size).

A similar situation exists in high-density one-to-one modular knapsack
systems. Theorem 7 shows that the relationship between target values and
representations in these systems is very smooth, with potential disconti-

nuities only at the unrepresentable target values (whose exact locations
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are usually unknown). If b and b' are two sufficiently close locations in
the 0-1-? C; sequence (which we introduced after Theorem 7), we expect
their values to be equal if |b-b'| is even, and opposite if |b-b'| is odd.
Consequently, we can interpolate the value of C; at b from the value of oy
at its closest grid neighbor b' whenever the two locations are in the same
continuity interval between successive question marks. If these question
marks are few and far between, we can use a small number of grid points in
order to correctly interpolate the value of C; at most of the locations.
We can now describe the density/security tradeoff result in detail.
Given a one-to-one modular knapsack system a],...,an (m) in which
m> u = m-Zn, we would like to find a representation for a given target f
value b. We make the simplifying assumption that (ai,m) =1 for all i,
and thus each generator can be normalized to 1. (Generators with a small
gcd can be handled by similar techniques, while generators with a large gcd,
if there aren't too many of them, can be handled by brute-force methods
once the coefficients ¢ of the other generators are determined.)

We proceed in n stages. At the jth stage, we change the equation

'b (mod m) in which the 3% |
¥
Ib, but in which the 4

n n
c.a. = b (mod m) into i§

o -
&1 €44 ] cilaj'a;) = a;

1

generator a; a; is 1 and the target value is 35

J

coefficients < remain unchanged. Successive multiples of the jth

generator :,
become successive integers, and thus the coefficient cj in the representation
of aglb is just the a}‘b-th entry in the appropriate 0-1-7 sequence.
We next choose a random set of r representations, and enumerate
their corresponding target values in the augmented system (the exact value

of r will be determined later). Since these representations are in a
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2%,

one-to-one correspondence with the representable target values, we get
a uniformly distributed grid of r locations along the 0-1 parts in the
0-1-? sequence, whose values are known. The desired cj value is then
interpolated in the usual way, and the tentative collection of coefficients
CyseeesCy calculated in the n stages is eventually verified by direct
substitution.
The most time-consuming part in this process is to find the closest
grid neighbor of the location we want to represent. We use a variant of
Horowitz and Sahni's algorithm [ 5]. We divide the (modified) generators
into two halves, and prepare for each half a random list of 0(v/r)
representation/target value pairs. If x and y are target values in the i
first and second list, respectively, then x+y (mod m) is a target value
whose representation in the complete system is the concatenation of x's
and y's representations in their respective half systems. Among the O(r) I

possible sums we can find the one that best approximates a given value z

~in the following way. We first sort each one of the two lists into

increasing target value order, using a linear time bucket sort. Starting

with x , we replace x by its list-successor whenever the sum is

.ty
min ~ “max §
smaller than z, and replace y by its list-predecessor whenever the sum is

bigger than z (always recording the best approximation found so far). We f

stop when we hit z or when one of the two lists is exhausted. In our
-1

j b and

modular case we have to repeat the process twice, with z=a

]b+-m, but the total time complexity is still 0(/r).

z=a,
J

Our algorithm successfully finds the representation of an (original)
target value b only if it is successful in all its n stages. At each stage

there is a certain fraction of target values for which the interpolation
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gives erroneous results, but by making this fraction smaller than 1/2n,
we can guarantee that no more than half of the target values will be
incorrectly processed at some stage.

What remains to be done is to show that for an appropriately chosen
number r of grid points, each stage can be made correct for all but a

1/2n fraction of the target values.

Definition: Given a 0-1-? sequence, the radius o¢f location b in it is the

shortest cyclic distance from b to a question mark.

Lemma 15: For every 0-1-? of length m with u question marks, the fraction

of the locations which have radiuses smaller than gﬁ.%. is at most %ﬁ*

Proof: In the interval of radius i%—-%-around each question mark there
can be at most %ﬁ-%-1ocations, and thus the number of locations which
1

are that close to any one of the u question marks is at most 75 M-

Q-E.D.

By choosing a random grid of, say, r=1000-n-u locations along the

0-1-? sequence, we get an average grid separation of Tf%ﬁﬁ?' %-, and thus

practically all the locations whose radiuses are bigger than JR- g- will

be closer to a grid point than to a question mark. Although some grids
are better and some grids are worse in this respect, the average grid
quality (which is what we are interested in when we consider probabilistic
algorithms) is excellent and does not depend on the knapsack system or on
the target value involved.

Using this r value, we get:

L

i s 0. sl
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Theorem 16: The probabilistic median complexity of solving instances of
a one-to-one modular knapsack system with modulus m, n generators and u

unrepresentable target values is at most 0(n3/2u]/2).

Proof: Each one of the n phases takes O(/T000-n-u) time, and the total is
thus 0(n3/2 u]/z). For every knapsack system with the above parameters,
the algorithm succeeds (with a very high probability that does not
depend on the system) in finding the representations of at least one half

of the possible target values. Q.E.D.

This algorithm is considerably faster.than the best known 0(2"/2)

algorithm [ 3 ] whenever the knapsack system is very-high-density (m % 2" >> ),
and it indicates that knapsack systems in which one can both encrypt and sign
messages may be dangerously overloaded. Although the result does not

directly apply to medium-density (m & gy A u) knapsack systems, it seems

best to use different types of knapsack systems for these two tasks, such

as a low-density (m & u >> 2") Merkle-Hellman system [6 ] for encryption

and an onto but non one-to-One system (Shamir [9]) for signature generation.
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